Package: EMMIXSSL 1.1.1

EMMIXSSL: Semi-Supervised Gaussian Mixture Model with a Missing-Data Mechanism

The algorithm of semi-supervised learning based on finite Gaussian mixture models with a missing-data mechanism is designed for a fitting g-class Gaussian mixture model via maximum likelihood (ML). It is proposed to treat the labels of the unclassified features as missing-data and to introduce a framework for their missing as in the pioneering work of Rubin (1976) for missing in incomplete data analysis. This dependency in the missingness pattern can be leveraged to provide additional information about the optimal classifier as specified by Bayes’ rule.

Authors:Ziyang Lyu, Daniel Ahfock, Geoffrey J. McLachlan

EMMIXSSL_1.1.1.tar.gz
EMMIXSSL_1.1.1.zip(r-4.5)EMMIXSSL_1.1.1.zip(r-4.4)EMMIXSSL_1.1.1.zip(r-4.3)
EMMIXSSL_1.1.1.tgz(r-4.5-any)EMMIXSSL_1.1.1.tgz(r-4.4-any)EMMIXSSL_1.1.1.tgz(r-4.3-any)
EMMIXSSL_1.1.1.tar.gz(r-4.5-noble)EMMIXSSL_1.1.1.tar.gz(r-4.4-noble)
EMMIXSSL_1.1.1.tgz(r-4.4-emscripten)EMMIXSSL_1.1.1.tgz(r-4.3-emscripten)
EMMIXSSL.pdf |EMMIXSSL.html
EMMIXSSL/json (API)

# Install 'EMMIXSSL' in R:
install.packages('EMMIXSSL', repos = c('https://lyu9118.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 231 downloads 21 exports 1 dependencies

Last updated 2 years agofrom:cfacc7d02e. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-winOKFeb 17 2025
R-4.5-macOKFeb 17 2025
R-4.5-linuxOKFeb 17 2025
R-4.4-winOKFeb 17 2025
R-4.4-macOKFeb 17 2025
R-4.3-winOKFeb 17 2025
R-4.3-macOKFeb 17 2025

Exports:Classifier_Bayescov2vecdiscriminant_betaEMMIXSSLget_clusterprobsget_entropyinitialvaluelist2parloglk_fullloglk_igloglk_misslogsumexpmakelabelmatrixneg_objective_functionnormalise_logprobpar2listpro2vecrlabelrmixvec2covvec2pro

Dependencies:mvtnorm